

Contact Center IVR
Development Guide

February 2024

sinch.com

1 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Revision History

Date Description

01.10.2014 First version of the document

22.12.2020 Rebranded for Sinch

22.09.2021 Checked and updated content for validity and marked

parts that only concern on-premise installations

08.02.2024 Reformulated note on using Python customizers in Sinch

Contact Pro cloud.

2 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Table of Contents

1 Getting Started ... 5
1.1 Personalizing System Configurator.. 5
1.2 User Rights .. 5
1.3 Configuring Customized IVR Prompts ... 6

2 Creating an IVR Application .. 8
2.1 Add New Application .. 8
2.2 IVR Editor ... 8
2.3 Adding Information to Elements ... 9
2.4 Maximizing the Work Area ... 10

3 VoiceXML Features .. 11
3.1 Supported Elements .. 11
3.2 Commonly Used VoiceXML Elements ... 11

3.2.1 var .. 11
3.2.2 form .. 12
3.2.3 block ... 12
3.2.4 field ... 13
3.2.5 transfer ... 15
3.2.6 soap ... 15
3.2.7 customstate .. 16

3.2.7.1 When to use custom functions ... 17
3.2.8 assign ... 18
3.2.9 audio .. 19
3.2.10 goto .. 20
3.2.11 if, elseif & else .. 21
3.2.12 prompt .. 23

3.3 Call Attached Data ... 24
4 Best Practices for IVRs.. 26

4.1 Basic Functions (ANumber, BNumber, and so on) .. 26
5 Troubleshooting ... 27

5.1 Business Communication Management Log Viewer (BLV) ... 27
5.2 BLV Find dialog .. 28
5.3 Turning Collapsed/Tagged-only mode on and off .. 30
5.4 Changing the Font ... 31
5.5 F1 Help Commands ... 32
5.6 Debugging your IVR ... 33

5.6.1 Setting the CEM log levels to debug .. 33
5.6.2 Locating the CEM log ... 34
5.6.3 Reading the CEM log ... 34

5.6.3.1 Finding log entries related to your IVR .. 34

3 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.6.3.2 Adding log entries into your IVR .. 36
6 Python ... 39

6.1 Manipulating Strings .. 39
6.2 Some other Python expressions used in IVR Editor .. 41
6.3 Dictionaries, Lists and Tuples .. 41
6.4 Dictionaries, Lists and Tuples – Examples .. 43
6.5 Accessing Data in Dictionaries .. 43
6.6 Accessing Data in Dictionaries – Complex Example ... 45
6.7 Accessing Data in Lists and Tuples ... 45

7 Python Customizer Example .. 47
7.1 DB Query Customizer Sample ... 49

8 SoapUI ... 50
8.1 Test Your Web Services .. 50
8.2 Using Soap Elements inside Sinch Contact Center IVR ... 53
8.3 Adding a log entry in your IVR to return a value from a Soap or custom state element 57
8.4 Evaluating the results of a Soap query .. 58
8.5 Using the Python syntax of Dictionaries, Lists and Tuples .. 60
8.6 Using counters ... 62
8.7 Using Soap elements with multiple input parameters .. 62
8.8 Complex Query structure – how to add as parameters ... 64

8.8.1 Mapping the xml structure to Python elements ... 64
8.8.2 Mapping the xml structure to Python syntax .. 64

9 Appendix 2 .. 67
10 Appendix 3 .. 69
11 Appendix 4 .. 71

4 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

About this Document

This document is an extension to the System Configurator guide and is aimed at

administrators who create IVR applications in System Configurator (SC).

NOTE Your SC application may appear different from the screenshot examples
because of the used version and language.

5 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

1 Getting Started

1.1 Personalizing System Configurator

In larger installations, you may want to change the maximum number of search

results returned, especially when you do not enter a search term.

1.2 User Rights

You must have rights to create, view and modify custom IVRs.

6 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

1.3 Configuring Customized IVR Prompts

1. In on-premise environments, place your customized prompt file in any folder in

the Sinch Contact Center server. For example: C:\Sinch\ContactCenter\. In cloud

environments, start from step 2.

2. Using System Configurator, open Prompt Files and add a prompt file to the Sinch

Contact Center system:

1. Select prompt type IVR Prompt.

2. Select language English (US) because it is the default language. Wav files for

other languages can also be added.

3. Browse to the correct file in the folder:

7 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

4. Click Save. The file is saved with a GUID name. The system asks if you want to

create a prompt connected to the new prompt file.

3. Answer Yes and Open.

The system uses default options to create a prompt from the new prompt file.

4. Accept the new IVR prompt by clicking Save (or Save and Close).

After creating the prompt click Refresh to see the new prompt in the Queue

Management > Prompts list.

Note: In the way instructed above, IVR prompt files will be created as GUID into the

system. Therefore, prompts cannot be transferred to another Sinch Contact Center

system as such, but the above steps must be repeated in the target Sinch Contact

Center system.

In on-premise environments, the alternative way is to use a folder for storing prompt

files:

• The prompt path can be a local path or a shared folder on a file server. For

example: \\SERVERNAME\prompts.

• The advantage of a shared folder is that you do not need to copy the prompts to

each server when a failover setup with multiple servers is used.

• You can create your own folders using Windows Explorer under this folder (for

example, ME_IVRPrompts) and then refer to this folder in your IVRs.

8 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

2 Creating an IVR Application

2.1 Add New Application

1. Enter a name and description for the application.

2. Select Active and Add Custom IVR to Reported Applications, and optionally

Early Queuing. To learn more about early queuing, see System Configurator

document (Call Switching > Global Switching Settings > Managing Signaling >

Early Queuing and Toll-Free Queuing).

3. Add IVR number(s).

4. To start creating your new IVR, click Add New.

2.2 IVR Editor

An IVR is made up of elements. Major elements (for example, block, callout,

customstate, and form) must be given a unique name. To add an element, either

click the Add New button or right-click on an existing element.

9 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Sinch Contact Center IVR file can be stored, imported, and exported in VoiceXML

format. Internally Sinch Contact Center compiles VoiceXML into the Python

programming language and uses Python when the IVR application is running.

Therefore, values and variables could be written as Python statements.

2.3 Adding Information to Elements

Elements are shown in the left frame and their parameters on the right. At least

some of the fields must have a value. If a value is missing, a sign is displayed. A

message shows what is missing. The sign disappears when all the needed

parameters have been entered.

10 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

2.4 Maximizing the Work Area

To widen the work area of the IVR Editor, move the divider between the SC menu

and the working area as far to the left as possible. To increase the height of the

working area, click on the Increase Block Height icon.

To expand the elements of the IVR Editor, click on the icon.

11 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3 VoiceXML Features

3.1 Supported Elements

For a list and detailed information of supported VoiceXML elements and extensions

to the VoiceXML standard, see the System Configurator guide: IVR Management >

Using IVR Editor > Supported VoiceXML Elements, Element Attributes, Data Items

and Queries, and Element Blocks.

3.2 Commonly Used VoiceXML Elements

For more details on the elements presented here, see the System Configurator guide

(IVR Management > Using IVR Editor > Supported VoiceXML Elements).

3.2.1 var

• The var element is used to store

values during IVR execution.

• You should declare all your variables at

the start of the vxml document.

Variables declared here can be

accessed from all subsequent

elements.

• Using this element makes the IVR vxml

document easier to read.

• To declare variables for a specific

element only, declare it in that element,

such as form.

• You can assign initial values to your

variables or use the assign element

later on.

12 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• Values must be valid python data types.

3.2.2 form

• The form element is used as a container for

other elements.

• The form name is used in goto elements.

• Commonly used child elements of a form

are:

• block

• field

• transfer

• soap

• customstate

• If you define var elements, they can be used within the form element only.

3.2.3 block

• The block element can be

used as a container.

• The block name is used in

goto elements.

• A block element is required

for adding:

• assign

• audio

• prompt

• if

13 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• log

• goto

• A block element can include

a condition so that it is only

executed if the condition is

met (a simple if with no else if

or else. In case elseif and else

is required Conditional Block

will add all elements at once).

3.2.4 field

• The field element is used to

to collect information from

callers.

• It can be used for simple menu

types in addition to collecting

longer strings of digits.

• field elements normally

require the following child

elements:

• audio

Announces what is expected

from the caller.

• filled

Executed when the input meets

the minimum and maximum

14 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

number of digits specified in the

field element.

• noinput

Executed when the timeout

specified in the field element is

reached and there has been no

input at all.

• nomatch

Executed when the timeout

specified in the field element is

reached and there has been

some input but it does not meet

the minimum or maximum

number of digits.

Not required when only 1 digit is

expected (as in a simple menu).

15 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3.2.5 transfer

• The transfer element

is used to transfer the call

to another number. This

can be:

• Another IVR

• A queue

• A Sinch Contact Center

internal extension

• Any valid external

telephone number.

• Destination can be a

variable – use

Destination Expression.

• Call Attached Data is a

string or variable

populated in the previous

step.

• For complex Call

Attached Data strings, it

is easier to create this

using customstate.

3.2.6 soap

Note: In Sinch Contact Pro cloud environments, using SOAP requires making a

service request to Sinch support.

16 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• The soap element is

used to fetch data

from external data

sources by using the

SOAP protocol.

• It relies on a SOAP

or web service

defined in a target

system such as SAP

ERP or SAP CRM.

• In SAP ERP or SAP

CRM, these web-

services can be a

standard ESoA

service or a function

module exposed as a

web-service.

• An end-point needs

to be created in

SOAPMANAGER for

web-services in SAP

ERP or SAP CRM.

3.2.7 customstate

Note: Using this element is not supported in Sinch Contact Pro cloud environments.

17 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• The customstate

element is used to

execute a python

customizer.

• If customized

functions are

needed to a

custom-made IVR,

they can be added

to the system as

Python code. Only

one customizer can

be active at a time

for each custom-

made IVR.

• To call the

customizer from the

IVR application,

use the

customstate

element.

3.2.7.1 When to use custom functions

• Custom Functions should only be used if you cannot achieve the same outcome

using VXML elements.

• You should be familiar with Python before attempting to create your own custom

functions.

• Custom Functions can be used for:

• OBDC calls to external databases in Sinch Contact Center on-premise

environments

18 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• Doing several looping operations and condition tests to create a python list or

dictionary

• SOAP queries if you wish to have the username and password as variables.

• A Python customizer provides a powerful tool to manipulate the Sinch Contact

Center system, and therefore you should only use customizers you can trust.

Never use customizers from an unknown source, and test all customizers in a

test system before use.

3.2.8 assign

• The assign element is

used to assign a value to

a variable. It is

recommended to create

all variables first.

• Values must be valid

python data types:

• String

• Number

• Dictionary

• List

• You can assign fixed

values.

• You can update existing

values:

• Increase a counter

value

• Add a value to a list.

19 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3.2.9 audio

• The audio

element is used

to play audio files

(also often

referred to as

prompts but not to

be confused with

the prompt

element) in the

IVR application.

• You can select

predefined IVR

type Prompt files

from a dropdown

menu. See how to

configure

customized IVR

prompts in the

“Getting Started”

section.

20 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3.2.10 goto

• The goto element is used

to transfer application

execution to a specific

element in the current VXML

document.

• You transfer to either of the

following:

• an element in the VXML

root (normally a form

element)

• an item within a root

element (normally a

field or block element).

Try to keep transfers using

this method within the

current form element so

as to make the VXML

more readable.

21 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3.2.11 if, elseif & else

• The if element is used

to specify conditional

statements that allow

choosing different

options based on, for

example, variable

values.

• You need to specify at

least one subsequent

element (for example,

assign, goto, audio,

or prompt).

• elseif and else are

regarded as child

elements of the if

element.

• Subsequent elements of

elseif and else do

not appear as child

elements but act in that

way.

• Try to design your IVR

so that a condition is

always matched (either

if, elseif or else).

Note: The application

evaluates the condition in

if and elseif elements

when executing child

22 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

elements in the if block. If

you have multiple child

elements in if or elseif

elements, do not use

conditions that can change

during execution. For

example, instead of using

queue queries in a

condition, use variables

where you assign the value

before an if block.

23 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3.2.12 prompt

• The prompt element is

used to build audio

messages that include

numerical information,

such as cardinal and

ordinal numbers, dates,

and times.

• You need to specify the

language used.

• You need to add at least

one say-as child element.

• In the say-as element,

you need to specify:

• Data Type (Digits,

Number, Ordinal, Date,

Date and Time or Time)

• Gender (Feminine or

Masculine)

• Declension

(Nominative, Genitive –

only required for certain

languages e.g. Finnish)

• A value child element to

the say-as element.

• Values must be valid

Python data types or

variables declared and

assigned earlier.

24 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3.3 Call Attached Data

• Call-attached data is nothing more than a Python dictionary (see chapter 6.3).

• You can add any information gathered in the IVR to this dictionary. For example:

{"Z_CADAlert": Caller selected Support – Account Inquiries,

"Z_AccountNumber": 123456}

• The OII Integrations interface of Sinch Contact Center converts this dictionary

into an xml message using the Application ID specified in the OII setup (default is

SAP_BCM/OII). For example:

<ItemAttachedData><Application

id="SAP_BCM/OII"><FirstBName>FE0CBDF0-FBB6-4FF3-8325-

C77322A15FAD </FirstBName><Z_CADAlert>Caller selected

Support – Account

Inquiries</Z_CADAlert><Z_AccountNumber>123456

</Z_AccountNumber><BNumberName>9216C832-FF83-4DF8-8A1A-

333CD34FAF76</BNumberName>

<FirstANumber>15136023488</FirstANumber><OrigQueue>9216C832-

FF83-4DF8-8A1A-333CD34FAF76

</OrigQueue></Application></ItemAttachedData>

• If you integrate Sinch Contact Center with SAP CRM, you may wish to send data

to an additional Application ID: CRM_IC/BUPA.

• Account identification in SAP CRM IC WebClient is done using a phone number

or GUID of a Business Partner. This GUID has to be sent to the Application ID:

CRM_IC/BUPA.

• To automatically confirm a Business Partner, an ‘X’ needs to be sent using the

key BPCONFIRMED in the same Application ID.

• All other information sent using this Application ID can be overwritten by SAP

CRM and therefore lost when the call is transferred.

• If you integrate Sinch Contact Center with SAP CRM or SAP ERP using

SAPphone, you may wish to send data to an additional Application ID:

25 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

SAPphone.

Sinch Contact Center OII converts the XML data to send to SAPphone

• In order to use different Application IDs, you need to create your own xml string.

The customizer highlighted in chapter 3.2.7 does this for you:

<Application

id="CRM_IC/BUPA"><CURRENTCUSTOMER></CURRENTCUSTOMER><CURRENT

CONTACT>

</CURRENTCONTACT><BPCONFIRMED></BPCONFIRMED></Application>

<Application id="SAPphone"><Calldata obj="KEYVALUE"

inst="0001" key="Z_AccountNumber">123456</Calldata>

</Application>

• CAD passed to your IVR from another

IVR is held in the dictionary "IVRInfo“

• To retrieve the value of

Z_AccountNumber you can use:

• self.CALL.GetExtraData().get(“IVRInfo”,{}).get(“Z_AccountNumber”)

26 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

4 Best Practices for IVRs

Declare any information you might want to change or use later as a variable. These

include, for example:

• Prompt files and collections of different prompt files

• Soap wsdl urls

• Valid keys to be selected in menus

• Counters

• Information to be sent as CAD.

Map a process into a form. A process can be, for example:

• Asking the caller for input and checking the result

• Calling a Soap query and then checking the result

• Handling errors and asking the caller for the next step

• Preparing the CAD and transferring the call.

Use fields for all caller input, as they:

• Can be contained in a form (a menu cannot)

• Are more flexible with checking for input and determining the next step.

4.1 Basic Functions (ANumber, BNumber, and so on)

• DirectoryService-API (To see how to use this function, see ANumber

recognition IVR exercise from the IVR repository).

• GetNumberInfo method allows checking Agent status (see Appendix 2).

• GetCurrentPRSProfile method is used to check agent profile status.

• AGENT.FIND method can be used to search for an agent object based on

address info or user GUID.

• Example of modified For Example_IVR_Conditional.xml and usage of

Queue.Query, see appendices 3 and 4. For a sample file, contact support.

• QUEUE.QUERY API is documented in the System Configurator document: IVR

Management > Using IVR Editor > Element Attributes > Data Items and Queries.

27 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5 Troubleshooting

Note: Both the BLV log viewer application and log files are directly only available in

Sinch Contact Center on-premise environments. Sinch Contact Pro cloud customers

should contact Sinch support with a service request to get access to log files.

5.1 Business Communication Management Log Viewer

(BLV)

Tip: Use only one Core while debugging an IVR application. This way all events can

be collected from a single log:

Sinch Contact Center on-premise software package includes a BLV log viewer

application customized for Sinch Contact Center log files:

28 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

You can view log data updated in real-time in Live mode or view the data available

at the time you open the log in Historical mode. To toggle between the modes, type

l (lower case) on your keyboard. Using the up arrow in the file also turns off Live

mode. Note the (L) appended to BLV in the Windows title bar to indicate Live mode:

5.2 BLV Find dialog

Use the Find dialog to search the log and highlight matches to your rules in it.

To open the dialog, press Ctrl + F on your keyboard.

You have the following options for finding matches in the log:

• To jump from one match to a pattern to the next, enter the pattern in the Find

pattern field and click Find. This closes the dialog and moves you back to the

main screen. You can quickly find the next or previous match with f or F keys.

• To highlight matches or only show lines that include them in the log:

1. Define the necessary rules in the Highlight / collapse rules section.

29 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

2. Select how you want to be able to see rule matches in the log:

• To only highlight the matches with a color but show the whole log file, click the

AC checkbox once on the rule line. This makes the check mark grey.

• In addition to highlighting, to be able to see only those lines in the log that

include these matches, click the AC checkbox twice. This makes the check

mark black.

• If you leave the checkbox unselected, the rule will not be used in highlighting.

3. Click Tag all. This closes the dialog and tags all lines that match with the

currently active Highlight / collapse rules. Tagging is a way of marking lines

permanently. In the main screen, you can then jump between them easily (with t

and T keys) or filter the view to show only tagged lines (C key).

• To filter out noise from a view, enter patterns for this into the Exclude rules

section. To use the rule in the main screen, press the e key. This hides all lines

that contain matches with the currently active Exclude rules.

30 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.3 Turning Collapsed/Tagged-only mode on and off

Collapsed mode only shows you the lines containing matches to your Highlight /

collapse rules that have black check marks (clicked twice). To toggle between

Collapsed and Full modes, press the C key on your keyboard. Note the (C)

appended to BLV in the Windows title bar to indicate Collapsed mode:

Tagged-only mode doesn’t hide any lines. Instead, it tags the lines that include

matches to your Highlight / collapse rules and allows you to move from one tagged

line to the next. Tagged-only mode considers rules with either grey or black check

marks (clicked once or twice). To toggle between Tagged-only and Full modes,

type C on your keyboard. Note the (T) appended to BLV in the Windows title bar to

indicate Tagged-only mode.

Press Ctrl+Shift+T to clear all tags.

31 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.4 Changing the Font

To open the Font Dialog, type o on your keyboard.

32 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.5 F1 Help Commands

33 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.6 Debugging your IVR

5.6.1 Setting the CEM log levels to debug

Make sure the CEM log level is high enough to show the IVR detail. In a production

environment, do not leave the log levels as Debug after debugging, as the log file

size will grow exponentially. Other options are: Warning, Info, and Trace. Warning is

usually the default value.

Open Registry Editor on the server and check the following values. Create any

missing values:

• Debug = 7

• DebugSecure = 0

• LogLevel = debug

• LogModule.Cem.Level = inherited

34 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.6.2 Locating the CEM log

CEM logs are usually located in folder:

drive:\Sinch\ContactCenter\Logs\InstallationName_Core

Log filename contains the following parts:

CEM_MachineName_InstallationName_Core_Date_Hour

Use the latest CEM log for debugging.

Note: Log files use UTC Date and Time regardless of your server time zone settings.

Tip: Sort the files using the Date Modified column in descending order to find the

latest file.

5.6.3 Reading the CEM log

5.6.3.1 Finding log entries related to your IVR

1. Make a call to your IVR and search for the number you called (or called from).

2. Search for the entry ‘CustomIvr_’ after this time.

Your IVR has a unique GUID (in this case

CustomIvr_7E4C9738C56B4A7A8FB307C88DC45ABA).

35 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

3. Add this to your search terms in BLV.

4. Click Find.

BLV log viewer shows matching entries:

36 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

5.6.3.2 Adding log entries into your IVR

There’s no breakpoint feature in the IVR. By adding log entries to your IVR, you can

find this entry in the CEM log and use it as a reference point. Unique log entries can

be used to pin-point each stage. See more about the log element in the System

Configurator document: IVR Management > Using IVR Editor > Supported

VoiceXML Elements > Log Element.

Enter your log entry text to the Expression field:

Search results in Core log:

You can also add a log entry to show the current value of a variable, such as

Z_CallingHour. Enter the name of the variable to the Expression field.

To find the variable entry in the log more easily, you can add unique text, such as

Calling hour is: “Calling Hour is : ” + str(Z_CallingHour)

37 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

38 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Search results:

39 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

6 Python

Note: This chapter is not relevant for Sinch Contact Pro cloud customers.

6.1 Manipulating Strings

Python
term

Description Example Values in Example Result

str String str(a) + str(b) a = "Hello ", b =
"World"

Hello World

lstrip() Remove a given
character from the
left

a.lstrip("0") a ="000001" 1

split Split a string at a
given character.
Produces a List

str(a).split(".") a = "1.00" ["1", "00"]

replace Replace a given
character in string

a.replace(“o", "") a = "Hello World" Hell Wrld

isdigit() Checks if a string is
comprised of just
digits

a.isdigit()
b.Isdigit()

a = "Hello World"
b = “12345"

False
True

These functions can be combined: a.replace("#", "").isdigit() returns

True when a = 12345#

Python
term

Description Example Values in Example Result

len Length len(a) a = "Hello World" 11

Character at position b a[b] a = "Hello World", b = 1 e

Characters from b to c a[b:c] a = "Hello World", b = 1, c=3 el

Characters up to b a[:b] a = "Hello World", b = 3 Hel

All but characters up to
b

a[b:] a = "Hello World", b = 3 lo World

Last character a[-1] a = "Hello World" d

Last but one character a[-2] a = "Hello World” l

Last b characters a[-b:] a = "Hello World", b = 3 rld

40 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

All but the last b
characters

a[:-b] a = "Hello World", b = 3 Hello Wo

41 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

6.2 Some other Python expressions used in IVR Editor

Python term Description Example Values in
Example

Result

int Integer int(a) a = 1.03 1

datetime.datetime.
now()

Returns current date
and time in datetime
format

datetime.datetime.
now()

2012-01-18
10:24:08.259000

datetime.datetime.
strptime

Formats a string
using a given format
in datetime format

datetime.datetime.
strptime(a, "%Y-
%m-%d")

a = "2012-04-22" 2012-04-22
00:00:00

You can use datetime to check if a date is in the past:

datetime.datetime.strptime(a, "%Y-%m-%d") < datetime.datetime.now()

For more python examples, see:

• http://docs.python.org/tutorial

• Google search: python term

6.3 Dictionaries, Lists and Tuples

Dictionaries {}

• A dictionary is an unordered set of key: value pairs, with the requirement that the

keys are unique (within one dictionary).

• Example: {‘First’:1,’Second’:2,’Third’:3,’Fourth’:4}

Lists []

• Lists are a list of values, each one numbered, starting from zero. The first one is

numbered 0, the second 1, the third 2, etc. You can remove values from the list

and add new values to the end.

• Example: [‘First',‘Second',‘Third',‘Fourth’]

Tuples ()

http://docs.python.org/tutorial

42 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• Tuples are just like lists, but you can't change their values. Again, each value is

numbered starting from zero, for easy reference.

• Example:

(’Sunday’,Monday,’,’Tuesday',‘Wednesday',‘Thursday',‘Friday',‘Saturday’)

43 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

6.4 Dictionaries, Lists and Tuples – Examples

A simple dictionary:

{'Multi': None, 'Meters': None, 'Blocked': 'X'}

A dictionary inside a dictionary:

{'Return': {'Type': 'E', 'Number': '016', 'Id': 'ZIVRMES‘}, 'Multi':

None, 'Meters': None, 'Blocked': 'X'}

A dictionary inside a tuple:

('item', {'Division': '51', 'Installation': '3000194370', 'Register':

'001', 'Equipment': '000000000040099113', 'Oldreading':

'29165', 'Newreading': None, 'Meternumber':

'000000000008000104'})

A dictionary inside a tuple, inside a list, inside a dictionary:

{'Meters': [('item', {'Division': '51', 'Installation': '3000194370',

'Register': '001', 'Equipment': '000000000040099113',

'Oldreading': '29165', 'Newreading': None, 'Meternumber':

'000000000008000104'}), ('item', {'Division': '52', 'Installation':

'3000417096', 'Register': '001', 'Equipment':

'000000000010117702', 'Oldreading': '5846', 'Newreading':

None, 'Meternumber': '000000080823161079'})], 'Blocked':

None}

6.5 Accessing Data in Dictionaries

Elements of a dictionary can be accessed by key in three different ways:

• mydict["somekey"] Throws a KeyError exception if mydict doesn’t contain

somekey

• mydict.get("somekey") Returns None if mydict doesn’t contain somekey

44 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• mydict.get("somekey",1) Returns a default value (1 in this case) if mydict

doesn’t contain somekey

To prevent a KeyError exception being thrown in the IVR, best practice is to use

mydict.get("somekey"). For example, if the dictionary is: mydict = {'Multi': None,

'Meters': None, 'Blocked': 'X'}

mydict["Blocked"] Returns X

mydict.get("Blocked") Returns X

mydict["Single“] Throws a KeyError exception

mydict.get("Single") Returns None

You can use a variable as the key: myvar = "Blocked"

mydict.get(myvar) Returns X

45 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

6.6 Accessing Data in Dictionaries – Complex Example

Elements of a dictionary within a dictionary can be accessed in the following ways:

mydict = {'Return': {'Type': 'E', 'Number': '016', 'Id': 'ZIVRMES‘},

'Multi': None, 'Blocked': 'X'}

mydict["Return"]["Type"] Returns E

mydict.get("Return",{}).get("Type") Returns E

mydict["Return"]["Letter"] Throws a KeyError exception

mydict.get("Return",{}).get("Letter") Returns None

mydict["Result"]["Letter"] Throws a KeyError exception

mydict.get("Result",{}).get("Letter") Returns None

Again, in order to prevent a KeyError exception being thrown in the IVR, best

practice is to use mydict.get("somekey1",{}).get("somekey2")

The first .get has to return a dictionary object in order to avoid a KeyError, so it

returns a new empty one (default value) in case there is no Result element available

in mydict

6.7 Accessing Data in Lists and Tuples

Elements of a list or tuple can only be accessed using a zero-based index. There is

no .get method available for lists and tuples.

mylist = ['foo','bar']

mylist[0] Returns 'foo'

mylist[1] Returns 'bar'

mylist[-1] Returns the last element in the list; 'bar' in this case

mylist[2] Throws an IndexError exception (list index out of range)

Use mylist.count("somevalue") to test if somevalue exists. 0 is returned if it doesn’t

exist.

mylist.count(“foo") Returns 1

46 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

mylist.count(“food") Returns 0

mylist[mylist.index('foo')] Returns ‘foo’ but can be used only if ‘foo’ exists in

the list or tuple

len(mylist) Returns 2 – the number of items in the list

You can append items to a list. For example, mylist + [‘gaa’] results in mylist =

['foo','bar‘,’gaa’]

47 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

7 Python Customizer Example

Note: For Sinch Contact Pro cloud, Sinch needs to verify that any customizer you

want to add won't cause security or performance issues. Create a service request

via the support portal for the customizer review. This is billable work and based on

actual review hours.

Python customizers can be used for various purposes with Sinch Contact Center IVR

application. This sample describes how to make a database query by using Python

customizer. For further details about IVR structure and the sample Python

customizer file, contact support. NOTE: Custom directory database table is called

“VipId” in this customizer sample.

Prerequisites:

• Create new table CustomerID to the Sinch Contact Center directory database.

• Modify Python customizer to access this table by using Windows authentication.

The customstate element is used to invoke a Python customizer method call and

store its results in a variable. For more information about customstate configurations,

see the System Configurator (SC) document.

The required values are:

• (form) Identifier = FindCustomerFromDatabase (Parent element for customstate

child element)

This is an identifier (name) for parent element. The identifier appears in the ID

column, and it is used as an address when the call is transferred to this element.

• (customstate) Identifier = CustomerGUID

This is an identifier (name) for child element. The identifier appears in the drop-

down list of expressions with the prefix customstate:, the results of the customized

method are called with that expression.

48 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• (customstate) Method Name = getCustomerById

This specifies the python customer method to call.

• (customstate) Parameter Values (Key and Value pairs) = 'CustomerID' and

CollectedCustomerId

• ‘CustomerId’ is the name of the custom method parameter. The value of this

parameter contains the customer id that is used to search for a customer form

the database.

• CollectedCustomerId is an identifier of the field element where the given

customer ID DTMF digits are collected.

• (customstate) Parameter Values (Key and Value pairs) = 'DirectoryField' and

'GUID'

• 'DirectoryField' is the name of the custom variable for connecting the custom

directory field to the appropriate GUID for search purposes in Python

customizer.

• GUID is the GUID of the custom directory field in Sinch Contact Center

directory database.

49 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

7.1 DB Query Customizer Sample

DB Query Customizer provides a good example with comments on how to connect

to internal or external databases by using Sinch Contact Center’s own ODBC API

and use the results. For the customizer, contact support.

50 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

8 SoapUI

Note: In Sinch Contact Pro cloud environments, using SOAP requires making a

service request to Sinch support.

SoapUI can be used to test your web services and to show the structure of the input

and output messages. By testing your web services first in SoapUI, you will eliminate

errors resulting from the Soap query first, which will make it much easier to use your

queries inside your IVR. By installing and running SoapUI from the server(s) where

the Sinch Contact Center Core VU is installed, you can first test if there are any

firewall issues. SoapUI is freeware and is available from: http://www.soapui.org/

8.1 Test Your Web Services

1. Create a new project and insert your wsdl url.

http://www.soapui.org/

51 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

2. Enter the user and password that will be used with the web services (this

assumes the web service is set up to use Basic Authentication).

3. Remove the SOAP1.2 interface, as it is not required.

52 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

4. Open Request 1 and enter the user and password that will be used with the web

services (this assumes the web service is set up to use Basic Authentication).

This is your query structure. We are only interested in the information in the

Body.

5. Fill in the parameter and submit the request.

53 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Now you should have your return structure. Again, we are only interested in the

information contained in the Body. Running this query in the IVR returns the same

structure but in a Python format using dictionaries, lists, and tuples.

8.2 Using Soap Elements inside Sinch Contact Center

IVR

The example used in this chapter:

 <urn:Bapizivrgetaccountbalance>

 <Accountnumber>123456</Accountnumber>

 </urn:Bapizivrgetaccountbalance>

54 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

55 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

1. Give your Soap element a unique name.

2. Enter the url of your wsdl file between quotes (that is, as a string) or use a

variable defined earlier:

• "http://mysapsystem.corp/myaccountbalancebapi.wsdl"

• str(Z_AccountBalance_wsdl)

3. The method name is the name specified in the urn:

 <urn:Bapizivrgetaccountbalance>

 <Accountnumber>123456</Accountnumber>

 </urn:Bapizivrgetaccountbalance>

4. Add the input parameters

your soap service is

expecting: xml child nodes

of the urn node.

• The key is the name of the

node.

• The key needs to be

within quotes to stop it

being evaluated as a

Python variable.

"Accountnumber"

• The value can be a string

or a variable.

5. Click to add

your entry.

56 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

6. Save your changes so you

don’t lose your entry.

7. Change the Query Timeout period if required

8. You can assign a variable containing a prompt to be played during execution

9. Enter the credentials as required.

This depends how your Soap end-point was set up in the target SAP CRM or

SAP ERP system in soapmanager.

10. Don’t forget to add error and timeout handlers. The system executes the timeout

element when the Query Timeout value defined earlier is reached.

57 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

8.3 Adding a log entry in your IVR to return a value from

a Soap or custom state element

To add a log entry to show the return value from a soap or custom state, add the

name of the element in the Expression:

Expression = SAPGet_Meter_Details

By adding a unique text to the log entry, you can find this entry in the CEM log more

easily:

Expression = " Soap element SAPGet_Meter_Details returned

" + str(SAPGet_Meter_Details)

You can then work out how to parse the result.

58 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Search Result - return value from a soap or custom state element

8.4 Evaluating the results of a Soap query

In the CEM log, you will see the result of the Soap query when you run the IVR.

Examples:

{'Country': BE, 'Number': 475334500, 'Return': X, 'ReturnMsg':

None}

{'Toocomplex': None, 'Balance': {'Accountnumber':

'000101955090', 'Overduebalance': '0.00', 'Grossbalance':

'4785.00-', 'Paymenttype': 'D', 'Netbalance': '4785.00-',

'Discountdate': '1900-01-01', 'Duedate': '2007-08-30'}, 'Return':

{'Type': 'I', 'Number': '014', 'MessageV4': None, 'MessageV2':

None, 'MessageV3': None, 'Message': 'Account Balance

Obtained', 'MessageV1': None, 'LogMsgNo': '000000', 'Id':

'ZIVRMES', 'LogNo': None}}

59 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

{'Return': {'Type': 'I', 'Number': '021', 'MessageV4': None,

'MessageV2': None, 'MessageV3': None, 'Message': 'Meters

Returned', 'MessageV1': None, 'LogMsgNo': '000000', 'Id':

'ZIVRMES', 'LogNo': None}, 'Multi': None, 'Meters': [('item',

{'Division': '51', 'Installation': '3000194370', 'Register': '001',

'Equipment': '000000000040099113', 'Oldreading': '29165',

'Newreading': None, 'Meternumber': '000000000008000104'}),

('item', {'Division': '52', 'Installation': '3000417096', 'Register':

'001', 'Equipment': '000000000010117702', 'Oldreading':

'5846', 'Newreading': None, 'Meternumber':

'000000080823161079'})], 'Blocked': None}

60 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

8.5 Using the Python syntax of Dictionaries, Lists and

Tuples

The following example is a simple python dictionary with 4 key-value pairs. Note: BE

and X are not strings but can be var or field.

{'Country': BE, 'Number': 475334500, 'Return': X, 'ReturnMsg':

None}

The following example contains 2 dictionaries: Balance and Return inside a

dictionary with 3 key-value pairs: Toocomplex, Balance and Return.

{'Toocomplex': None, 'Balance': {'Accountnumber':

'000101955090', 'Overduebalance': '0.00', 'Grossbalance':

'4785.00-', 'Paymenttype': 'D', 'Netbalance': '4785.00-',

'Discountdate': '1900-01-01', 'Duedate': '2007-08-30'}, 'Return':

{'Type': 'I', 'Number': '014', 'MessageV4': None, 'MessageV2':

None, 'MessageV3': None, 'Message': 'Account Balance

Obtained', 'MessageV1': None, 'LogMsgNo': '000000', 'Id':

'ZIVRMES', 'LogNo': None}}

Assuming your Soap element is called mysoapquery:

• To access the value of Toocomplex, you can use:

mysoapquery.get("Toocomplex")

• To access the value of Type, you can use:

mysoapquery.get("Return",{}).get("Type")

Complex Return structure

{'Return': {'Type': 'I', 'Number': '021', 'MessageV4': None,

'MessageV2': None, 'MessageV3': None, 'Message': 'Meters

61 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

Returned', 'MessageV1': None, 'LogMsgNo': '000000', 'Id':

'ZIVRMES', 'LogNo': None}, 'Multi': None, 'Meters': [('item',

{'Division': '51', 'Installation': '3000194370', 'Register': '001',

'Equipment': '000000000040099113', 'Oldreading': '29165',

'Newreading': None, 'Meternumber': '000000000008000104'}),

('item', {'Division': '52', 'Installation': '3000417096', 'Register':

'001', 'Equipment': '000000000010117702', 'Oldreading':

'5846', 'Newreading': None, 'Meternumber':

'000000080823161079'})], 'Blocked': None}

This can be broken down using mysoapquery.get(“Return") into:

{'Type': 'I', 'Number': '021', 'MessageV4': None, 'MessageV2':

None, 'MessageV3': None, 'Message': 'Meters Returned',

'MessageV1': None, 'LogMsgNo': '000000', 'Id': 'ZIVRMES',

'LogNo': None}

Using mysoapquery.get("Meters",{})[0] results in:

('item', {'Division': '51', 'Installation': '3000194370', 'Register':

'001', 'Equipment': '000000000040099113', 'Oldreading':

'29165', 'Newreading': None, 'Meternumber':

'000000000008000104'})

Using mysoapquery.get("Meters",{})[0][1].get("Division") results in:

51

62 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

8.6 Using counters

Using a variable as a counter, you can read each of the entries in Meters.

Assuming we use the variable mycounter and assign it an initial value of 0:

• Using mysoapquery.get("Meters",{})[mycounter] results in:

('item', {'Division': '51', 'Installation': '3000194370', 'Register':

'001', 'Equipment': '000000000040099113', 'Oldreading':

'29165', 'Newreading': None, 'Meternumber':

'000000000008000104'})

• Using mysoapquery.get("Meters",{})[mycounter][1].get("Division") results in:

51

• Incrementing mycounter by 1 results in:

('item',{'Division': '52', 'Installation': '3000417096', 'Register':

'001', 'Equipment': '000000000010117702', 'Oldreading':

'5846', 'Newreading': None, 'Meternumber':

'000000080823161079'})

52

8.7 Using Soap elements with multiple input parameters

Add all the input parameters your soap service is expecting: xml child nodes of the

urn node.

63 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

<urn:Bapizivrccupdateacc>

<Accountnumber>?</Accountnumber>

<Cardnumber>?</Cardnumber>

<Cardtype>?</Cardtype>

<Expirydate>?</Expirydate>

<Mode>?</Mode>

</urn:Bapizivrccupdateacc>

64 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

8.8 Complex Query structure – how to add as

parameters

8.8.1 Mapping the xml structure to Python elements

The syntax is quite flexible. Some constructs can be expressed in several ways.

Others must be expressed with specific syntax.

parameter-value value

value simple-value | complex-value

simple-value number | string | “None”

complex-value node-dictionary | node-list | node-tuple

node-dictionary “{“ node-name “:” value [“,”…] “}”

node-list “(“ complex-value [“,” …] “)”

node-tuple “(“ node-name [“,” attributes [“,” value]] “)”

attributes attribute-dictionary | “None”

attribute-dictionary “{“ attribute-name “:” simple-value [“,” …] “}”

node-name string

attribute-name string

8.8.2 Mapping the xml structure to Python syntax

You must use the list syntax for an element with sub-elements if there are:

• Sub-elements with attributes. Attributes are specified as a dictionary within a list:

<urn:somerequest>

 <ids>

 <id name="ID" value="Card">123</id>

 </ids>

</urn:somerequest>

65 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

• Multiple instances of some sub-element. There are no attributes here so the

second item in each list is None:

<urn:somerequest>

 <ids>

 <id>123</id>

 <id>321</id>

 </ids>

</urn:somerequest>

In other cases, you can use either dictionary or list syntax for an element:

<urn:somerequest>

 <person>

 <firstname>John</firstname>

 <surname>Smith</surname>

 </person>

</urn:somerequest>

Dictionary syntax:

List syntax:

Here we give the list of meters as a list of lists. Each list item is then a tuple of three

things: node name, attributes, and value. The value is just a dictionary specifying the

sub-nodes.

<urn:Bapizivrmrupdate>

 <Accountnumber>1234567890</Accountnumber>

 <Meters>

 <item>

 <Installation>Inst A</Installation>

66 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

 <Meternumber>Meter 1</Meternumber>

 <Newreading>12345</Newreading>

 </item>

 <item>

 <Installation>Inst B</Installation>

 <Meternumber>Meter B</Meternumber>

 <Newreading>54321</Newreading>

 </item>

 </Meters>

</urn:Bapizivrmrupdate>

67 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

9 Appendix 2

Agent presence can be revealed with the GetNumberInfo function:

self.m_AppConf.GetNumberInfo('<agent extension number>')

The function returns a Python dictionary containing information of the user.

Examples of return values:

• Wrong Number:
{'Type': 'UNKNOWN', 'OrgNbr': '67676767', 'MappedNbr': '67676767'}

• Agent logged out:
{'IvrLanguage': 'ET', 'MappedNbr': '4401', 'Language': 'EN', 'MaxQue': 3, 'PBX':
'', 'OrgNbr': '4401', 'FwdTo': '4555', 'Type': 'LoggedOut'}

• Agent logged in and free (Presence-profile, free):
{'Available': 1, 'IvrLanguage': 'ET', 'Slave': 0, 'MappedNbr': '4401', 'Language':

'EN', 'Calls': 0, 'UIStatus': 'StatusPaperWork', 'MaxQue': 3, 'PBX': '', 'Paused':

0, 'OrgNbr': '4401', 'FwdTo': '4555', 'Outbound': 0, 'Type': 'LoggedIn'}

• Agent logged in and busy (Presence-profile, busy):
{'Available': 0, 'IvrLanguage': 'ET', 'Slave': 0, 'MappedNbr': '4401', 'Language':

'EN', 'Calls': 1, 'UIStatus': 'StatusPaperWork', 'MaxQue': 3, 'PBX': '', 'Paused':

0, 'OrgNbr': '4401', 'FwdTo': '4555', 'Outbound': 0, 'Type': 'LoggedIn'}

• Agent logged in and free (Absence-profile, free)
{'Available': 0, 'IvrLanguage': 'ET', 'Slave': 0, 'MappedNbr': '4401', 'Language':

'EN', 'Calls': 0, 'UIStatus': 'StatusPause', 'MaxQue': 3, 'PBX': '', 'Paused': 1,

'OrgNbr': '4401', 'FwdTo': '4555', 'Outbound': 0, 'Type': 'LoggedIn'}

The function can be called and used in the following way:

68 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

69 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

10 Appendix 3

QUEUE.QUERY example 1

The task is to create a conditional IVR that forwards calls to a secondary queue if

average waiting time in the primary queue exceeds a specified time value. We

modify the ready-made example that checks if there are more calls waiting than the

defined maximum number of waiting calls, so that the average waiting time is used

as a critical factor.

Also, instead of a customer parameter recommended in the original example, a

variable is added.

Primary Queue = 2100 = DefaultQueue

Secondary Queue = 2101 = OverflowQueue

AverageWaiting = 5 = time in seconds

Steps to create:

1. Import the “Example_IVR_Conditional.xml” from the Examples and Templates

folder.

2. Add Element <var> ID “AverageWaiting” Value “5” and <var> ID

“OverflowQueue” Value”2101”

3. Modify DefaultQueue value to be “2100”

4. Modify Element <if> by selecting from the dropdown menu value “Queue Status

Query: Average Waiting Time” and edit the line to be like

QUEUE.QUERY(str(DefaultQueue), “Sta_AverageWaitingTime”) >

int(AverageWaiting)

5. Modify Element <assign> Value to point to “OverflowQueue”

6. Modify attribute Descriptions accordingly as they are shown in the log files.

70 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

71 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

11 Appendix 4

QUEUE.QUERY sample 2

Task is to create an conditional IVR that forwards calls to secondary queue if

estimated waiting time in primary queue exceeds spesified time value. To verify

functionality add counters to log printing.

Primary Queue = 2100 = DefaultQueue

Secondary Queue = 2101 = OverflowQueue

EstWaiting = 30 = Estimated Waiting Time in seconds

QueMaxWaitTime = 660 = Default value if not defined in SC “Queue Management”>

“Max.Waiting Time”

Steps to create:

1. Import the “Example_IVR_Conditional.xml” from the Examples and Templates

folder.

2. Add Element <var> ID “AverageWaiting” Value “5” and <var> ID

“OverflowQueue” Value”2101”

3. Add <var> EstWaiting, Value 30 and <var>QueMAxWaitTime, Value 660 and

Modify DefaultQueue value to be “2100”

4. Modify Element <if> by selecting from the dropdown menu value “Queue Query:

Estimated Waiting Time” and edit the line to be like

QUEUE.QUERY(str(DefaultQueue), "Que_EstWaitTime") > int(EstWaiting)

5. Add Element <if> from the dropdown menu value “Queue Query: Estimated

Waiting Time”:

QUEUE.QUERY(str(DefaultQueue), "Que_EstWaitTime") <

int(QueMaxWaitTime)

6. Modify Element <assign> Value to point to “OverflowQueue”

7. Add New Child Element <log> by selecting froom dropdown and edit

“Expression”:

8. "IvrApplication.logprint (CALL_ID= " + str({CALLID}) + " Average waiting time = "

+ str(QUEUE.QUERY(str(DefaultQueue), "Sta_AverageWaitingTime"))

72 Copyright © 2021 Sinch. All rights reserved. NDA Confidential.

Sinch Contact Pro IVR Development Guide – February 2024

9. Add <log>with expression: "IvrApplication.logprint (CALL_ID= " + str({CALLID}) +

" Got over estwait time limit, FWD to OverflowQue, EstWait= " +

str(QUEUE.QUERY(str(DefaultQueue), "Que_EstWaitTime"))

10. Modify attribute Descriptions accordingly as they are shown in the log files.

